unified_python/随机深林.py

50 lines
1.7 KiB
Python
Raw Normal View History

2025-08-13 08:50:32 +08:00
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import (
accuracy_score, f1_score, roc_auc_score,
precision_recall_curve, classification_report
)
from sklearn.model_selection import train_test_split
if __name__ == '__main__':
data = pd.read_csv('tr_user_tj.csv', header=0)
data1 = data[['star_num', 'sign_num', 'coll_num', 'dna_num', 'task_num', 'word_num', 'balance_amt', 'earn_amt',
'season_point', 'point', 'star_score', 'term_amt', 'match_num']]
# 分离特征和目标变量
X = data1.drop('match_num', axis=1)
y = data1['match_num']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
# 训练模型
rf_classifier.fit(X_train, y_train)
# 预测
y_pred = rf_classifier.predict(X_test)
y_pred_proba = rf_classifier.predict_proba(X_test)[:, 1] if len(np.unique(y)) == 2 else rf_classifier.predict_proba(
X_test)
# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='weighted')
print(f"Accuracy: {accuracy}")
print(f"F1 Score: {f1}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
# 特征重要性
feature_importance = pd.DataFrame({
'feature': X.columns,
'importance': rf_classifier.feature_importances_
}).sort_values('importance', ascending=False)
print("\nFeature Importance:")
print(feature_importance)