50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from sklearn.ensemble import RandomForestClassifier
|
||
|
from sklearn.calibration import CalibratedClassifierCV
|
||
|
from sklearn.metrics import (
|
||
|
accuracy_score, f1_score, roc_auc_score,
|
||
|
precision_recall_curve, classification_report
|
||
|
)
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
data = pd.read_csv('tr_user_tj.csv', header=0)
|
||
|
data1 = data[['star_num', 'sign_num', 'coll_num', 'dna_num', 'task_num', 'word_num', 'balance_amt', 'earn_amt',
|
||
|
'season_point', 'point', 'star_score', 'term_amt', 'match_num']]
|
||
|
|
||
|
# 分离特征和目标变量
|
||
|
X = data1.drop('match_num', axis=1)
|
||
|
y = data1['match_num']
|
||
|
|
||
|
# 划分训练集和测试集
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||
|
|
||
|
# 创建随机森林分类器
|
||
|
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
|
||
|
|
||
|
# 训练模型
|
||
|
rf_classifier.fit(X_train, y_train)
|
||
|
|
||
|
# 预测
|
||
|
y_pred = rf_classifier.predict(X_test)
|
||
|
y_pred_proba = rf_classifier.predict_proba(X_test)[:, 1] if len(np.unique(y)) == 2 else rf_classifier.predict_proba(
|
||
|
X_test)
|
||
|
|
||
|
# 计算评估指标
|
||
|
accuracy = accuracy_score(y_test, y_pred)
|
||
|
f1 = f1_score(y_test, y_pred, average='weighted')
|
||
|
|
||
|
print(f"Accuracy: {accuracy}")
|
||
|
print(f"F1 Score: {f1}")
|
||
|
print("\nClassification Report:")
|
||
|
print(classification_report(y_test, y_pred))
|
||
|
|
||
|
# 特征重要性
|
||
|
feature_importance = pd.DataFrame({
|
||
|
'feature': X.columns,
|
||
|
'importance': rf_classifier.feature_importances_
|
||
|
}).sort_values('importance', ascending=False)
|
||
|
|
||
|
print("\nFeature Importance:")
|
||
|
print(feature_importance)
|