2025-03-04 10:24:36 +08:00

148 lines
4.2 KiB
SQL

-- 由于收入是按照不同的统计方式选择不同的计算方式
-- 1.divide_type=1:
-- order_amount * divide_scale
-- 2.divide_type=2:
-- 阶梯(累计):
-- 0->10% 50->20% 100->%30
-- 第一个月20(流水): 20->10%
-- 第二个月90(流水): 30->10% 50->20% 10->30%
-- 3.divide_type=3:
-- 阶梯(按月):
-- 0->10% 50->20% 100->%30
-- 第一个月20(流水): 20->10%
-- 第二个月90(流水): 50->10% 40->20%
WITH money_divide_scale_tmp AS (
SELECT
relation_id,
money,
divide_scale,
COALESCE(LEAD(money) OVER (PARTITION BY relation_id ORDER BY money), 999999999999.99) AS next_money
FROM (
SELECT
relation_id,
cast((elem->>'money')::text as numeric) money,
cast((elem->>'divide_scale')::text as numeric) divide_scale
FROM (
SELECT
relation_id,
jsonb_array_elements(divide_scale_step) elem
FROM
dim.game_product_relation
WHERE
divide_type != 1
) tt
) ttt
WHERE
ttt.money IS NOT NULL
AND ttt.divide_scale IS NOT NULL
),
revenue_df_tmp AS
(
-- divide_type=1 money= order_amount * divide_scale
SELECT
t2.relation_id,
SUM(t1.order_amount * t2.divide_scale)
money,
t1.ds,
t1.ds_type,
t1.ds_name
FROM
dwd.order_df t1
INNER JOIN dim.game_product_relation t2 ON t1.game_channel_id = t2.game_channel_id
AND t1.game_identity = t2.game_identity
AND t1.game_platform_id = t2.game_platform_id
AND t2.divide_type = 1
where t1.ds_type = 'd'
GROUP BY
t2.relation_id,
t1.ds,
t1.ds_type,
t1.ds_name
UNION ALL
-- 阶梯(累计):
-- 0->10% 50->20% 100->%30
-- 第一个月20(流水): 20->10%
-- 第二个月90(流水): 30->10% 50->20% 10->30%
SELECT
tt1.relation_id,
tt1.order_amount * tt2.divide_scale money,
tt1.ds,
tt1.ds_type,
tt1.ds_name
FROM (
SELECT
t2.relation_id,
t1.ds,
t1.ds_type,
t1.ds_name,
t1.order_amount,
SUM(t1.order_amount) OVER (PARTITION BY t2.relation_id ORDER BY ds) AS sum_order_amount
FROM
dwd.order_df t1
INNER JOIN dim.game_product_relation t2 ON t1.game_channel_id = t2.game_channel_id
AND t1.game_identity = t2.game_identity
AND t1.game_platform_id = t2.game_platform_id
AND t2.divide_type = 2
WHERE
t1.ds_type = 'd') tt1
INNER JOIN money_divide_scale_tmp tt2 ON tt1.relation_id = tt2.relation_id
AND tt1.sum_order_amount >= tt2.money
AND tt1.sum_order_amount <= tt2.next_money
-- 阶梯(按月):
-- 0->10% 50->20% 100->%30
-- 第一个月20(流水): 20->10%
-- 第二个月90(流水): 50->10% 40->20%
-- divide_type=3
UNION ALL
SELECT
tt1.relation_id,
tt1.order_amount * tt2.divide_scale money,
tt1.ds,
tt1.ds_type,
tt1.ds_name
FROM (
SELECT
t2.relation_id,
t1.ds,
t1.ds_type,
t1.ds_name,
t1.order_amount,
SUM(t1.order_amount) OVER (PARTITION BY t2.relation_id, SUBSTR(t1.ds, 1, 6) ORDER BY ds) AS sum_order_amount
FROM
dwd.order_df t1
INNER JOIN dim.game_product_relation t2 ON t1.game_channel_id = t2.game_channel_id
AND t1.game_identity = t2.game_identity
AND t1.game_platform_id = t2.game_platform_id
AND t2.divide_type = 3
WHERE
t1.ds_type = 'd') tt1
INNER JOIN money_divide_scale_tmp tt2 ON tt1.relation_id = tt2.relation_id
AND tt1.sum_order_amount >= tt2.money
AND tt1.sum_order_amount <= tt2.next_money
)
INSERT INTO dwd.revenue_df(relation_id,money,ds,ds_type,ds_name)
SELECT relation_id
,sum(money) money
,ds
,ds_type
,ds_name
FROM revenue_df_tmp where relation_id='${relation_id}'
GROUP BY relation_id
,ds
,ds_type
,ds_name
union all
SELECT relation_id
,sum(money) money
,SUBSTRING(ds, 1, 6) || '00' ds
,'m' ds_type
,'' ds_name
FROM revenue_df_tmp where relation_id='${relation_id}'
GROUP BY relation_id
,SUBSTRING(ds, 1, 6) || '00'
ON CONFLICT (relation_id,ds,ds_type)
DO UPDATE SET money = EXCLUDED.money,ds_name = EXCLUDED.ds_name
;