-- 由于收入是按照不同的统计方式选择不同的计算方式 -- 1.divide_type=1: -- order_amount * divide_scale -- 2.divide_type=2: -- 阶梯(累计): -- 0->10% 50->20% 100->%30 -- 第一个月20(流水): 20->10% -- 第二个月90(流水): 30->10% 50->20% 10->30% -- 3.divide_type=3: -- 阶梯(按月): -- 0->10% 50->20% 100->%30 -- 第一个月20(流水): 20->10% -- 第二个月90(流水): 50->10% 40->20% WITH money_divide_scale_tmp AS ( SELECT relation_id, money, divide_scale, COALESCE(LEAD(money) OVER (PARTITION BY relation_id ORDER BY money), 999999999999.99) AS next_money FROM ( SELECT relation_id, cast((elem->>'money')::text as numeric) money, cast((elem->>'divide_scale')::text as numeric) divide_scale FROM ( SELECT relation_id, jsonb_array_elements(divide_scale_step) elem FROM dim.game_product_relation WHERE divide_type != 1 ) tt ) ttt WHERE ttt.money IS NOT NULL AND ttt.divide_scale IS NOT NULL ), revenue_df_tmp AS ( -- divide_type=1 money= order_amount * divide_scale SELECT t2.relation_id, SUM(t1.order_amount * t2.divide_scale) money, t1.ds, t1.ds_type, t1.ds_name FROM dwd.order_df t1 INNER JOIN dim.game_product_relation t2 ON t1.game_channel_id = t2.game_channel_id AND t1.game_identity = t2.game_identity AND t1.game_platform_id = t2.game_platform_id AND t2.divide_type = 1 where t1.ds_type = 'd' GROUP BY t2.relation_id, t1.ds, t1.ds_type, t1.ds_name UNION ALL -- 阶梯(累计): -- 0->10% 50->20% 100->%30 -- 第一个月20(流水): 20->10% -- 第二个月90(流水): 30->10% 50->20% 10->30% SELECT tt1.relation_id, tt1.order_amount * tt2.divide_scale money, tt1.ds, tt1.ds_type, tt1.ds_name FROM ( SELECT t2.relation_id, t1.ds, t1.ds_type, t1.ds_name, t1.order_amount, SUM(t1.order_amount) OVER (PARTITION BY t2.relation_id ORDER BY ds) AS sum_order_amount FROM dwd.order_df t1 INNER JOIN dim.game_product_relation t2 ON t1.game_channel_id = t2.game_channel_id AND t1.game_identity = t2.game_identity AND t1.game_platform_id = t2.game_platform_id AND t2.divide_type = 2 WHERE t1.ds_type = 'd') tt1 INNER JOIN money_divide_scale_tmp tt2 ON tt1.relation_id = tt2.relation_id AND tt1.sum_order_amount >= tt2.money AND tt1.sum_order_amount <= tt2.next_money -- 阶梯(按月): -- 0->10% 50->20% 100->%30 -- 第一个月20(流水): 20->10% -- 第二个月90(流水): 50->10% 40->20% -- divide_type=3 UNION ALL SELECT tt1.relation_id, tt1.order_amount * tt2.divide_scale money, tt1.ds, tt1.ds_type, tt1.ds_name FROM ( SELECT t2.relation_id, t1.ds, t1.ds_type, t1.ds_name, t1.order_amount, SUM(t1.order_amount) OVER (PARTITION BY t2.relation_id, SUBSTR(t1.ds, 1, 6) ORDER BY ds) AS sum_order_amount FROM dwd.order_df t1 INNER JOIN dim.game_product_relation t2 ON t1.game_channel_id = t2.game_channel_id AND t1.game_identity = t2.game_identity AND t1.game_platform_id = t2.game_platform_id AND t2.divide_type = 3 WHERE t1.ds_type = 'd') tt1 INNER JOIN money_divide_scale_tmp tt2 ON tt1.relation_id = tt2.relation_id AND tt1.sum_order_amount >= tt2.money AND tt1.sum_order_amount <= tt2.next_money ) INSERT INTO dwd.revenue_df(relation_id,money,ds,ds_type,ds_name) SELECT relation_id ,sum(money) money ,ds ,ds_type ,ds_name FROM revenue_df_tmp GROUP BY relation_id ,ds ,ds_type ,ds_name union all SELECT relation_id ,sum(money) money ,SUBSTRING(ds, 1, 6) || '00' ds ,'m' ds_type ,'月' ds_name FROM revenue_df_tmp GROUP BY relation_id ,SUBSTRING(ds, 1, 6) || '00' ON CONFLICT (relation_id,ds,ds_type) DO UPDATE SET money = EXCLUDED.money,ds_name = EXCLUDED.ds_name ;